Abstract

We construct a seven-term exact sequence involving low degree cohomology spaces of a Lie algebra 𝔤, an ideal 𝔥 of 𝔤, and the quotient 𝔤/𝔥 with coefficients in a 𝔤-module. The existence of such a sequence follows from the Hochschild–Serre spectral sequence associated to the Lie algebra extension. However, some of the maps occurring in this induced sequence are not always explicitly known or easy to describe. In this article, we give alternative maps that yield an exact sequence of the same form, making use of the interpretations of the low-dimensional cohomology spaces in terms of derivations, extensions, etc. The maps are constructed using elementary methods. This alternative approach to the seven term exact sequence can certainly be useful, especially since we include straightforward cocycle descriptions of the constructed maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.