Abstract

By investigating model-independent bounds for exotic options in financial mathematics, a martingale version of the Monge-Kantorovich mass transport problem was introduced in cite{BeiglbockHenry-LaborderePenkner,GalichonHenry-LabordereTouzi}. In this paper, we extend the one-dimensional Brenier's theorem to the present martingale version. We provide the explicit martingale optimal transference plans for a remarkable class of coupling functions corresponding to the lower and upper bounds. These explicit extremal probability measures coincide with the unique left and right monotone martingale transference plans, which were introduced in cite{BeiglbockJuillet} by suitable adaptation of the notion of cyclic monotonicity. Instead, our approach relies heavily on the (weak) duality result stated in cite{BeiglbockHenry-LaborderePenkner}, and provides, as a by-product, an explicit expression for the corresponding optimal semi-static hedging strategies. We finally provide an extension to the multiple marginals case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.