Abstract

AbstractLet be a curve of genus at least 2 embedded in E1 × … × EN, where the Ei are elliptic curves for i = 1, . . . , N. In this article we give an explicit sharp bound for the Néron–Tate height of the points of contained in the union of all algebraic subgroups of dimension < max(), where is the minimal dimension of a translate (resp. of a torsion variety) containing .As a corollary, we give an explicit bound for the height of the rational points of special curves, proving new cases of the explicit Mordell Conjecture and in particular making explicit (and slightly more general in the CM case) the Manin–Dem’janenko method for curves in products of elliptic curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.