Abstract

In this paper, we propose an explicit jump immersed interface method (EJIIM) for the incompressible Navier–Stokes equations with a discontinuous viscosity and singular forces along one or several interfaces in the solution domain. The EJIIM is used to get a second-order finite difference discretization at the grid points near or on the interface even if the jump conditions for the two-phase flow are complicated. The new method is based on a projection method with modifications only at grid points near or on the interface. From the derivation of the new method, we expect fully second-order accuracy for the velocity and nearly second-order accuracy for the pressure in the maximum norm including those grid points near or on the interface. This has been confirmed in our numerical experiments. Furthermore, the computed solutions are sharp across the interface. The work here is a necessary first step in developing second-order accurate algorithm for two-phase Navier–Stokes equations with a moving interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.