Abstract
The partial eigenvalue (or natural frequency) assignment or placement, only by the stiffness matrix perturbation, of an undamped vibrating system is addressed in this paper. A novel and explicit formula of determining the perturbating stiffness matrix is deduced from the eigenvalues perturbation theorem for a low-rank perturbed matrix. This formula is then utilized to solve the partial eigenvalue (or natural frequency) assignment via the static output feedback. The control matrix, output matrix and feedback gain matrix can be explicitly expressed and easily constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Low Frequency Noise, Vibration and Active Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.