Abstract

Similarly to the Virasoro algebra, the Neveu–Schwarz algebra has a discrete series of unitary irreducible highest weight representations. These are labeled by the values of [Formula: see text] (the central charge) and of the highest weight hpq = [(p (m + 2) − qm)2 − 4]/(8m (m + 2)) where m, p, q are some integers. The Verma modules constructed with these values (c, h) are not irreducible, however, as they contain two Verma submodules, each generated by a singular vector ψp,q (of weight hpq + pq/2) and ψm−p, m+2−q (of weight hpq + (m−p)(m+2−q)/2), respectively. We give an explicit expression for these singular vectors whenever one of its indices is 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.