Abstract

In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, "ndinv'', on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, for $\Delta_{h_m}$ a Macdonald eigenoperator, $C_{p_i}$ a modified Hall-Littlewood operator and $(p_1,p_2,\dots ,p_k)$ a composition of n. Using their new statistics, they are able to give a new interpretation for the polynomial $\langle\nabla e_n, h_j h_n-j\rangle$ as a q,t numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki. Dans un travail récent Duane, Garsia et Zabrocki ont introduit une nouvelle statistique, "ndinv'' pour une famille de Fonctions Parking. Ce "ndinv" découle d'une récurrence satisfaite par le polynôme $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, oú $\Delta_{h_m}$ est un opérateur linéaire avec fonctions propres les polynômes de Macdonald, les $C_{p_i}$ sont des opérateurs de Hall-Littlewood modifiés et $(p_1,p_2,\dots ,p_n)$ est un vecteur à composantes entières positives. Par moyen de cette statistique, ils ont réussi à donner une nouvelle interprétation combinatoire au polynôme $\langle\nabla e_n, h_j h_n-j\rangle$ on remplaçant "dinv'" par "ndinv". Rappelons nous que la conjecture "Shuffle"' exprime ce même polynôme comme somme pondérée de Fonctions Parking avec poids t à la "aire'" est q au "dinv". Puisque il donnent une définition récursive du "ndinv" il posent le problème de l'obtenir d'une façon directe. On rèsout se problème en donnant une formule explicite qui permet de calculer directement le "ndinv" à la manière de la formule classique du "dinv". Dans cet article on décrit le travail qu'on a fait pour construire cette formule et on démontre que nôtre formule donne le même "ndinv" récursivement construit par Duane, Garsia et Zabrocki.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.