Abstract

In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, "ndinv'', on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, for $\Delta_{h_m}$ a Macdonald eigenoperator, $C_{p_i}$ a modified Hall-Littlewood operator and $(p_1,p_2,\dots ,p_k)$ a composition of n. Using their new statistics, they are able to give a new interpretation for the polynomial $\langle\nabla e_n, h_j h_n-j\rangle$ as a q,t numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki. Dans un travail récent Duane, Garsia et Zabrocki ont introduit une nouvelle statistique, "ndinv'' pour une famille de Fonctions Parking. Ce "ndinv" découle d'une récurrence satisfaite par le polynôme $\langle\Delta_{h_m}C_p1C_p2...C_{pk}1,e_n\rangle$, oú $\Delta_{h_m}$ est un opérateur linéaire avec fonctions propres les polynômes de Macdonald, les $C_{p_i}$ sont des opérateurs de Hall-Littlewood modifiés et $(p_1,p_2,\dots ,p_n)$ est un vecteur à composantes entières positives. Par moyen de cette statistique, ils ont réussi à donner une nouvelle interprétation combinatoire au polynôme $\langle\nabla e_n, h_j h_n-j\rangle$ on remplaçant "dinv'" par "ndinv". Rappelons nous que la conjecture "Shuffle"' exprime ce même polynôme comme somme pondérée de Fonctions Parking avec poids t à la "aire'" est q au "dinv". Puisque il donnent une définition récursive du "ndinv" il posent le problème de l'obtenir d'une façon directe. On rèsout se problème en donnant une formule explicite qui permet de calculer directement le "ndinv" à la manière de la formule classique du "dinv". Dans cet article on décrit le travail qu'on a fait pour construire cette formule et on démontre que nôtre formule donne le même "ndinv" récursivement construit par Duane, Garsia et Zabrocki.

Highlights

  • We start by introducing parking functions, fixing the notation and recalling some auxiliary results.1.1 Parking FunctionsDefinition 1.1 (Parking Function)

  • F (n,k,m) where F (n, k, m) denotes the family of parking functions that start with a big car, have m small cars and n big cars, k of which are on the main diagonal and whose word is a shuffle of 1, 2, . . . , m with m + 1, m + 2, . . . , m + n

  • Since our ndinv and the ndinv of Duane, Garsia and Zabrocki are equal in the base case, Theorem 4.1 is all that is needed to show that these two ndinvs satisfy the same recursion and that, they must be identical

Read more

Summary

Introduction

We start by introducing parking functions, fixing the notation and recalling some auxiliary results.1.1 Parking FunctionsDefinition 1.1 (Parking Function). F (n,k,m) where F (n, k, m) denotes the family of parking functions that start with a big car, have m small cars and n big cars, k of which are on the main diagonal and whose word is a shuffle of 1, 2, . Use this modified parking function to define the first two lines of the following three line array.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call