Abstract

We present an explicit finite-difference scheme for direct simulation of the motion of solid particles in a fluid. The method is based on a second-order MacCormack finite-difference solver for the flow, and Newton’s equations for the particles. The fluid is modeled with fully compressible mass and momentum balances; the technique is intended to be used at moderate particle Reynolds number. Several examples are shown, including a single stationary circular particle in a uniform flow between two moving walls, a particle dropped in a stationary fluid at particle Reynolds number of 20, the drafting, kissing, and tumbling of two particles, and 100 particles falling in a closed box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.