Abstract

AbstractThe explicit space-time expansion discontinuous Galerkin scheme (Gassner et al., J. Sci. Comp. 34(3):260–286, 2008) is applied for solving ideal and viscous magnetohydrodynamic equations. Based on a Taylor expansion in space and time about the barycenter of each cell at the old time level, this predictor-corrector strategy enables each cell to have its own time step whereas the high order of accuracy in time is retained. Thus, it may significantly speed up computations. The discontinuous Galerkin method together with the local time-stepping algorithm allows for an efficient local sub-cycling for a divergence cleaning using a hyperbolic transport correction (Dedner et al., J. Comput. Phys. 175(2):645–673, 2002). Convergence tests and test problems are performed to challenge the capabilities of the space-time expansion scheme.KeywordsRiemann ProblemDiscontinuous GalerkinDiscontinuous Galerkin MethodDivergence CorrectionDiscontinuous Galerkin SchemeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.