Abstract

In this paper, an explicit and unconditionally stable finite-difference time-domain (FDTD) method is developed for electromagnetic analysis. Its time step is not restricted by the space step, and its accuracy is ensured for the time step chosen based on accuracy. The strength of the conventional explicit FDTD is thus preserved in avoiding a system matrix solution, while the shortcoming of the conventional FDTD is eliminated in the time step's dependence on space step. Numerical experiments in both 2-D and 3-D simulations have demonstrated the performance of the proposed method in stability and efficiency without sacrificing accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.