Abstract
In this paper, a fractional Korteweg-de Vries equation (KdV for short) with initial condition is introduced by replacing the first order time and space derivatives by fractional derivatives of order α and β with 0 < α , β ≤ 1 , respectively. The fractional derivatives are described in the Caputo sense. The application of Adomian decomposition method, developed for differential equations of integer order, is extended to derive explicit and numerical solutions of the fractional KdV equation. The solutions of our model equation are calculated in the form of convergent series with easily computable components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.