Abstract
This paper is an explication of secret sharing schemes, emphasizing combinatorial construction methods. The main problem we consider is the construction of perfect secret sharing schemes, for specified access structures, with the maximum possible information rate. In this paper, we present numerous direct constructions for secret sharing schemes, such as the Shamir threshold scheme, the Boolean circuit construction of Benaloh and Leichter (for general access structures), the vector space construction of Brickell, and the Simmons geometric construction. We discuss the connections between ideal schemes (i.e., those with information rate equal to one) and matroids. We also mention the entropy bounds of Capocelli et al. Then we give a very general construciton, called the decomposition construction, and numerous applications of it. In particular, we study schemes for access structures based on graphs and the many interesting bounds that can be proved; and we determine the exact value of the optimal information rate for all access structures on at most four participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.