Abstract

A central and critical structure in tuberculosis, the mycobacterial granuloma consists of highly organized immune cells, including macrophages that drive granuloma formation through a characteristic epithelioid transformation. Difficulties in imaging within intact animals as well as the inherent caveats of in vitro assembly models have severely limited the study and experimental manipulation of mature granulomas. Here we describe a new ex vivo granuloma culture technique, wherein mature, fully organized granulomas are microdissected and maintained in three-dimensional culture. This approach, in which granulomas retain key bacterial and host characteristics, enables high-resolution microscopy of granuloma macrophage dynamics, including epithelioid macrophage motility and granuloma consolidation. Through mass spectrometry, we find active production of key phosphotidylinositol species identified previously in human granulomas. We describe a method to transfect isolated granulomas, enabling genetic manipulation. In addition, we provide proof-of-concept for host-directed small molecule screens, identifying PKC signaling as an important regulator of granuloma macrophage organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.