Abstract

Lung cancer, a prevalent and life-threatening condition, necessitates early detection for effective intervention. Considering the recent advancements in deep learning techniques, particularly in medical image analysis, which offer unparalleled accuracy and efficiency, in this paper, we propose a method for the automated identification of cancerous cells in lung tissue images. We explore various deep learning architectures with the objective of identifying the most effective one based on both quantitative and qualitative assessments. In particular, we assess qualitative outcomes by incorporating the concept of prediction explainability, enabling the visualization of areas within tissue images deemed relevant to the presence of lung cancer by the model. The experimental analysis, conducted on a dataset comprising 15,000 lung tissue images, demonstrates the effectiveness of our proposed method, yielding an accuracy rate of 0.99.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.