Abstract

Nowadays, one of the promising applications for the laser fluorescent analysis in remote sensing is to monitor oil pollution both on the water surface and on the earth one.A task to provide laser fluorescence remote sensing of oil pollution on the earth surface is much more difficult than that of to do the same on the water surface. The monitoring oil pollution laser fluorescence results can have no large reliability (lead to the great number of false alarms) because of the great number of disrupters (for example, plant fluorescence).However, plants available in the pipeline corridor may be not only disrupter, but also an oil pollution mark. Oil pollutions lead to developmental disorder of plants and induce their stress. The laser fluorescence methods can detect such stress situations.The paper concentrates on the experimental studies of laser fluorescence remote sensing method to detect the plant oil pollution stress situations for the eye-safe fluorescence excitation wavelength of 355 nm.A laboratory setup was designed to study spectra of laser-induced fluorescence of plants. In the laboratory setup the third harmonic of the Nd-YAG laser at the eye-safe wavelength of 355 nm was used as a fluorescence-exciting source. The laser-induced fluorescence spectra of plants were measured within 380 – 780 nm spectrum range.The experimental study results of laser-induced fluorescence spectra of plants in normal and stress situations caused by oil pollution are given for the eye-safe fluorescence- exciting wavelength ofThe paper shows that the analysis of recorded laser-induced fluorescence spectra allows us to detect stress situations caused by oil pollution. An identifiable factor to characterise a profile deformation of the laser-induced fluorescence spectrum for stress situations may be a fluorescence intensity ratio in the spectral ranges of 680…690 nm and 730…740 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.