Abstract

In order to achieve a more realistic and accurate computational simulation of native and bioprosthetic heart valve dynamics, a finite shell element model was developed. Experimentally derived and uncoupled in-plane and bending behaviors were implemented into a fully nonlinear stress resultant shell element. Validation studies compared the planar biaxial extension and three-point bending simulations to the experimental data and demonstrated excellent fidelity. Dynamic simulations of a pericardial bioprosthetic heart valve with the developed shell element model showed significant differences in the deformation characteristics compared to the simulation with an assumed isotropic bending model. The new finite shell element model developed in the present study can also incorporate various types of constitutive models and is expected to help us to understand the complex dynamics of native and bioprosthetic heart valve function in physiological and pathological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call