Abstract

A membrane-coated fiber (MCF) array approach is proposed for predicting the percutaneous absorption of chemicals and drugs from chemical or biological mixtures. Multiple MCFs were used to determine the partition coefficients of compounds (log K MCF). We hypothesized that one MCF will characterize one pattern of molecular interactions and therefore the skin absorption process can be simulated by a multiple MCF array having diverse patterns of molecular interactions. Three MCFs, polydimethylsiloxane (PDMS), polyacrylate (PA) and CarboWax (Wax), were used to determine the log K MCF values for a set of calibration compounds. The skin permeability log(kp) of the compounds was measured by diffusion experiments using porcine skin. The feasibility of the MCF array approach for predicting skin permeability was demonstrated with the three MCFs. A mathematical model was established by multiple linear regression analysis of the log(kp) and log K MCF data set: log(kp) = − 2.34–0.124 log K pdms + 1.91 log K pa − 1.17 log K wax ( n = 25, R 2 = 0.93). The MCF array approach is an alternative animal model for skin permeability measurement. It is an experimentally based, high throughput approach that provides high prediction confidence and does not require literature data nor molecular structure information in contrast to the existing predictive models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.