Abstract

In this paper, an analytical solution is investigated in the zero-inertia problem for surge flow phenomena in non-prismatic channels considering the impact of infiltration (introduced by Technische Univ. Dresden) in dry-channels under drought and wet conditions in a semi-arid climate in Iran. The hydrodynamic analytical model introduced by Dresden University is free of numerical troubles, easy to run, computationally efficient, and fully satisfies the law of volume conservation. In a first test series, the hydrodynamic analytical ZI model can be compared favorably with a full hydrodynamic numerical model (HEC-RAS) in a permeable non-prismatic channel. In the next step, a sensitivity and error analysis was conducted and found that the Manning-Strickler coefficient, hydraulic radius, and inflow hydrograph have important effects on the velocity of the surge, suggesting the importance of an adequate description of the topography. The new approach is finally applied to simulate and compare 10 scenarios to manage artificial groundwater recharge in three channels in the downstream of Garin Dam under wet (more than 25%) and drought (less than 5%) conditions in the west of Iran. Based on tested scenarios, infiltration rate of bad and suitable scenarios varies from 3 to 85% and 1 to 76% of the total volume of released water in Garin in wet and drought phases, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call