Abstract

In recent years, application of the standing column well (SCW) ground heat exchanger (GHX) has been noticeably increased as a heat transfer mechanism of ground source heat pump (GSHP) systems with its high heat capacity and efficiency. Determination of the ground thermal properties is an important task for sizing and estimating cost of the GHX. In this study, an in situ thermal response test (TRT) is applied to the thermal performance evaluation of SCW. Two SCWs with different design configurations are installed in sequence to evaluate their effects on the thermal performance of SCW using a single borehole. A line source method is used to derive the effective thermal conductivity and borehole thermal resistance. Effects of operating parameters are also investigated including bleed, heat injection rate, flow rate and filler height. Results show that the effective thermal conductivity of top drawn SCW (Type A) is 11.7% higher than that of bottom drawn SCW (Type B) and of operating parameters tested bleed is the most significant one for the improvement of the thermal performance (40.4% enhanced in thermal conductivity with 10.9% bleed).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.