Abstract

Active needles demonstrate improved accuracy and tip deflection compared to their passive needle counterparts, a crucial advantage in percutaneous procedures. However, the ability of these needles to effectively navigate through tissues is governed by needle-tissue interaction, which depends on the tip shape, the cannula surface geometry, and the needle insertion method. In this research, we evaluated the effect of cannula surface modifications and the application of a vibrational insertion technique on the performance of shape memory alloy (SMA)-actuated active needles. These features were inspired by the mosquito proboscis' unique design and skin-piercing technique that decreased the needle tissue interaction force, thus enhancing tip deflection and steering accuracy. The bioinspired features, i.e., mosquito-inspired cannula design and vibrational insertion method, in an active needle reduced the insertion force by 26.24% and increased the tip deflection by 37.11% in prostate-mimicking gel. In addition, trajectory tracking error was reduced by 48%, and control effort was reduced by 23.25%, pointing towards improved needle placement accuracy. The research highlights the promising potential of bioinspired SMA-actuated active needles. Better tracking control and increased tip deflection are anticipated, potentially leading to improved patient outcomes and minimized risk of complications during percutaneous procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.