Abstract
To optimize existing iron ore reduction processes or to develop new ones, it is necessary to know the reduction kinetics of the iron ore of interest under the relevant operating conditions. In this work the reduction kinetics of hematite fine iron ore was studied for industrial-scale processes using the fluidized bed technology. Especially designed batch tests were performed in a laboratory-scale fluidized bed reactor fluidized with H2, H2O, CO, CO2, N2 at atmospheric and elevated pressures to simulate the relevant process conditions. To obtain the reduction rates and the degree of reduction, the concentrations of H2O, CO, and CO2 in the outlet gas were analyzed by FT-IR spectroscopy. Preliminary reduction tests showed a strong effect of the sample weight on the reduction rates, especially in the early stages of reduction. The optimum sample weight was determined by partly replacing the hematite with silica sand. Additionally, the silica sand provided a constant and stable flow pattern throughout the reduction tests. The effects of temperature, gas composition, particle size and pressure on the rates of reduction were tested and discussed. Rate analysis showed the existence of two phases with different rates during the reduction tests. Additional investigations (microscope analysis, SEM) demonstrated that in the first phase the rates were controlled by mass transport in the gas phase and in the second phase by the reduction process within the small grains of the iron ore particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.