Abstract

Poor physical properties of biodiesel (BD100) namely high viscosity and density causes atomization problems leading to higher smoke, HC and CO emissions. The purpose of this work is to enhance the performance aspects and to limit emissions from Papaya seed biodiesel operation. This research paves a way of investing the impact of decanol (n-D) and DTBP on biodiesel/diesel blends on the research engine. Fuel blends employed in these investigations were prepared by altering the volume percentage of Diesel with Papaya seed biodiesel, DTBP, and n-Decanol respectively to prepare three tertiary blends. Diesel is referred to as base fuel with no alteration. Diesel at 50% volume is blended with 50% volume of Papaya seed biodiesel and termed as BD50 (Modified fuel). The modified fuel (BD50) is blended with 10% volume of DTBP and referred as DTBP + BD50 (45% Diesel, 45% BD and 10% DTBP on volume basis). In addition, the modified fuel (BD50) is blended with 10% volume of n-Decanol and referred as n-D + BD50 (45% Diesel, 45% BD and 10% n-D on a volume basis). This work revealed that the performance aspects such as fuel consumption reduced (1.5–2.3%) and thermal efficiency enhanced drastically (0.5–0.8%) with the inclusion of decanol (n-D) and DTBP to BD50. Smoke, HC and CO level decreased for DTBP + BD50, n-D + BD50, and BD50 with a penalty of marginal higher NOX emissions than diesel. Combustion fronts, namely Heat release rate (HRR) and peak pressure increased for BD50 with decanol (n-D) and DTBP inclusion. This research work reveals that 10% of decanol (n-D) and DTBP inclusion in BD50 can optimize diesel engine emissions, combustion, and performance with undergoing any modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call