Abstract

The pipe failure tests were performed using 102mm-Sch.80 carbon steel pipe with various simulated local wall thinning defects, in the present study, to investigate the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The failure mode, load carrying capacity, and deformation ability were analyzed from the results of experiments conducted under loading conditions of 4-point bending and internal pressure. A failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Also, the results indicated that the load carrying capacity and deformation ability were depended on stress state in the thinning region and dimensions of thinning defect. With increase in axial length of thinning area, for applying tensile stress to the thinning region, the dependence of load carrying capacity was determined by circumferential thinning angle, and the deformation ability was proportionally increased regardless of the circumferential angle. For applying compressive stress to thinning region, however, the load carrying capacity was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.