Abstract

AbstractThe initial stages of gas‐phase polymerizations of propylene and ethylene are analyzed using a fixed bed stopped flow reactor. The very early development of particle morphology and polymer properties is analyzed for three different commercial catalyst systems: MgCl2‐ and SiO2‐supported Ziegler–Natta and SiO2‐supported metallocene. It is shown that, depending on the operating conditions, distinct nonuniform catalyst fragmentation patterns can develop, confirming different scenarios described by published fragmentation models. In addition, it is shown that the molecular weight distributions and polymer yields obtained during the very early stages of the polymerization suggest the existence of significant temperature gradients inside the growing polymer particles. Finally, it is shown that the ratio of catalyst to glass beads in the bed can have a pronounced effect on the evolution of the polymerization reaction. This can be interpreted in terms of the significant temperature difference between the polymer particles and the gaseous monomer stream. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call