Abstract

The deposition of ash on a diesel particulate filter (DPF) results in an increase in pressure drop across the aftertreatment system, which leads to reduced capacity for soot and an increase in frequency of regeneration to eliminate the soot. To estimate the amount of ash and design a reduction method for the accumulated ash on the DPF, a deeper understanding of the ash generation mechanism is required. Previous studies have found that ash sampled at exhaust manifolds comprises metal sulfate and some oxides, whereas ash accumulated on DPFs primarily comprises typical metal sulfates. Although metal oxides are converted to the metal sulfates, the conversion mechanism is not well understood. Herein, the formation mechanism of calcium sulfate (CaSO4), which is the main component of ash on DPFs, from calcium oxide (CaO) was investigated using a flow reactor. CaO was made to react with SO2, SO3, O2, and H2O, when passed through a diesel oxidation catalyst. Quantitative analysis of the ash components in the products was performed using ion chromatography. The concentrations of SO2, SO3, and H2O during the reaction were analyzed by Fourier-transform infrared spectroscopy. Based on the experimental results, it was found that CaSO4 mainly formed from the reaction of CaO with SO2 and SO3; whereas, H2O inhibited CaSO4 formation owing to the change in physicochemical properties of CaO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.