Abstract

This paper focuses on the analysis of dynamic characteristics of structural systems, maximum response of acceleration and maximum inter-story displacement angle etc. so as to study the seismic performance, yielding mechanism and seismic resistance capacity of the structure under the circumstance of constructional measures of seismic intensity VII through an earthquake shake table test on a model of a six-story reinforced masonry structure with small-sized concrete hollow blocks. In view of the whole test process, the integral deformation of the reinforced masonry structural model under the influence of seismic vibration is predominantly bending deformation. While inputting different earthquake intensity, the transverse peak average of maximum input acceleration that can be sustained by the structure is lower than that of the vertical peak average. Meanwhile, transverse deformation is more severe than vertical deformation, indicating that vertical seismic resistance capacity is stronger than transverse seismic capacity. The test result shows that the effect of the constraint system consisted of ring beam, constructional column as well as horizontal tie reinforcement is quite obvious, the structure possesses comparatively strong resistance of failure under the influence of moderate and strong earthquakes, which can completely meet the requirement specified in the Seismic Codes, that is, standing erectly when it is subjected to great earthquakes in the area of seismic intensity VII. When the structure is subjected to rare earthquakes, it also possesses considerable seismic resistance capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call