Abstract

Pavement structures constructed on the expansive soil subgrade experience a higher upward pressure compared to any other subgrade material. The upward pressure is caused due to high swelling and shrinkage characteristics of expansive clay soil. The present study has investigated and identified the mechanisms by which a remolded expansive soil can be modified to reduce the upward pressure and swelling (heave). To achieve this, a lightweight, environmentally friendly, and high pressure resistive expanded polystyrene (EPS) granules have been used with expansive soil s from three different locations of Madhya Pradesh state, India. The study has been performed to understand the swelling and strength characteristics of soil with and without the use of EPS (density = 21.6 kg/m3) as per ASTM specifications. The chemical and microstructural components of the expansive soil were investigated using autotuned total reflectance Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Several laboratory experiments, including optimum moisture content, maximum dry unit weight, grain-size distribution, liquid limit, plastic limit, shrinkage limit, free swell index, unconfined compressive strength, and pressure swelling tests were carried out on the statically compacted expansive clay soil specimen with and without EPS (0.25%, 0.50%, 1.00%). The maximum addition of EPS was considered as 1% as the very high expansion was observed, and beyond this, further addition of EPS was not feasible. The results show that the swelling pressure, expansion percentage, and time rate of swell decrease, whereas the unconfined compressive strength (UCS) increases with the addition of EPS. The inclusion of EPS in expansive clay soil exponentially reduced the heave and the upward pressure, whereas the maximum UCS was observed at 0.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.