Abstract
AbstractThe present study systematically investigates shock‐induced alteration of organic simulants of planetary bodies (OSPBs) as a function of peak shock pressure and temperature by impact experiments. Our results show that the composition and structure of OSPBs are unchanged upon impacts at peak pressures ≤~5 GPa and temperatures ≤~350 °C. On the other hand, these are dramatically changed upon impacts at >7–8 GPa and > ~400 °C, through loss of hydrogen‐related bonds and concurrent carbonization, regardless of the initial compositions of OSPBs. Compared with previous results on static heating of organic matter, we suggest that shock‐induced alteration cannot be distinguished from static heating only by Raman and infrared spectroscopy. Our experimental results would provide a proxy indicator for assessing degree of shock‐induced alteration of organic matter contained in carbonaceous chondrites. We suggest that a remote‐sensing signature of the 3.3–3.6 μm absorption due to hydrogen‐related bonds on the surface of small bodies would be a promising indicator for the presence of less‐thermally‐altered (i.e., <350 °C) organic matter there, which will be a target for landing to collect primordial samples in sample‐return spacecraft missions, such as Hayabusa2 and OSIRIS‐REx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.