Abstract

Supercritical carbon dioxide (SCO2) is a promising working fluid for the cryogenic refrigeration, air-condition and heat pump systems. The present study sets up a SCO2–water test loop to study the heat transfer performance of SCO2 in a double pipe heat exchanger. The effects of SCO2-side pressure, mass flux and buoyancy force as well as water-side mass flux are investigated. It is found that the total and SCO2-side heat transfer coefficients reduce as the SCO2-side pressure increases. The peak total and SCO2-side heat transfer coefficients appear at a higher temperature than the pseudo critical temperature. The water-side mass flux has a larger effect on the total heat transfer coefficient compared to the SCO2-side mass flux in the studied cases. The contribution of buoyancy force to the heat transfer performance is large at the small SCO2-side mass flux and it becomes smaller as the SCO2-side mass flux increases. The SCO2-side pressure and water-side mass flux have little effect on the buoyancy force. A heat transfer correlation that includes the effect of buoyancy force is obtained by fitting the experimental data with genetic algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.