Abstract

An experimental study was undertaken to explore the conditions and performance on rough and finish grinding fir-tree root forms of turbine blades made of a nickel-based alloy using vitrified CBN wheels and water-based grinding fluid. This work was motivated by switching the grinding of fir-tree root forms from grinding with conventional abrasive wheels to vitrified CBN wheels for reducing overall production cost and enhancing productivity. Grinding experiments were conducted to measure grinding forces, power, surface roughness, and stress near the blade roots under various dressing and grinding conditions. Wheel re-dressing life in terms of the total number of good parts ground between dressing was tested with the condition producing the maximum material removal rate while satisfying preset part quality and process requirements. It was found that the maximum material removal rate achievable in rough grinding was restricted by the stress limit and the wheel re-dressing life was dominated by the radial wheel wear limit. The targeting part quality and process requirements were achieved. It was proved that vitrified CBN grinding process is feasible and very promising to machine fir-tree root forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call