Abstract

The proposed research study aims to improve the productivity of solar still (SS) by using low-cost and eco-friendly materials. The aforementioned objective was achieved by enhancing the evaporation rate of seawater in the absorber basin and the condensation rate over the glass cover of the solar still. In this study, the low-cost and eco-friendly materials used for enhancing the evaporation rate in the solar still were molasses powder (MP), sawdust (SD) and rice husk (RH). In addition to these materials, bamboo straw (BS), banana leaf stem (BL) and rice straw (RS) were used as absorbing materials over the glass cover for enhancing the condensation rate. The experiments were carried out under similar meteorological conditions, and the results of the modified solar still were compared with the conventional solar still (CSS). The productivities of CSS, SSMP, SSRH, SSSD, SSBS, SSBL and SSRS were about 2250 mL/m2, 2383 mL/m2, 2467 mL/m2, 3033 mL/m2, 2700 mL/m2, 2683 mL/m2 and 3367 mL/m2, respectively. The results of the experimental investigation highlighted that the SSSD had a comparatively better evaporation rate and 34.81% higher yield than CSS. Besides, SSRS had a comparatively better condensation rate and a 51.88% higher yield than CSS. Furthermore, the combination of sawdust (SD) and rice straw (RS) was investigated for the combined enhancement of evaporation and condensation. The solar still with sawdust and rice straw (SSSDRS) showed a 62.88% improvement in productivity with 3633 mL/m2 when compared to CSS. Also, the economic analysis showed that the cost per litre (CPL) of freshwater obtained from SSSDRS was about ₹ 1.9 ($ 0.025) with a payback period of 4.4 months which was the least when compared to all the considered cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.