Abstract
The characteristics of biomass air–steam gasification in a fluidized bed are studied in this paper. A series of experiments have been performed to investigate the effects of reactor temperature, steam to biomass ratio (S/B), equivalence ratio (ER) and biomass particle size on gas composition, gas yield, steam decomposition, low heating value (LHV) and carbon conversion efficiency. Over the ranges of the experimental conditions used, the fuel gas yield varied between 1.43 and 2.57 N m 3/kg biomass and the LHV of the fuel gas was between 6741 and 9143 kJ/N m 3. The results showed that higher temperature contributed to more hydrogen production, but too high a temperature lowered gas heating value. The LHV of fuel gas decreased with ER. Compared with biomass air gasification, the introduction of steam improved gas quality. However, excessive steam would lower gasification temperature and so degrade fuel gas quality. It was also shown that a smaller particle was more favorable for higher gas LHV and yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.