Abstract

Wind turbines operating in cold regions are prone to freezing in winter, which can affect their performance and safety. To resolve this situation, the development of blade anti-icing technology has attracted widespread attention. In this study, a type of biochar/polypyrrole coating was obtained through synthesis on the surface of biochar. After characterization, it was found that the porous structure, irregular dents, and bumps on the surface of biochar/polypyrrole material contributed to the formation of a nanoscale roughness structure with a typical super-hydrophobic nanostructure. Additionally, it had a sufficient surface area. The wetting characteristics of the coating were analyzed with the assistance of a contact angle measurement instrument. The contact angle of the coating was determined as 151°, which indicates the excellent hydrophobic properties of the coating. Icing wind tunnel tests were carried out to evaluate the anti-icing effect of biochar coating and biochar/polypyrrole coating at different ambient temperatures and wind speeds. Compared with uncoated leaves, the icing area of biochar/polypyrrole coating was reduced. Additionally, the anti-icing effect of biochar/polypyrrole coating was most significant. This study provides a practical reference for the research of anti-icing coating on wind turbine blades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call