Abstract

A catalytic Pd–Ag membrane reactor has been packed with a Co–Al 2O 3 catalyst to perform the ethanol steam reforming reaction using a simulated bio-ethanol mixture (H 2O/C 2H 5OH feed molar ratio = 18.7/1). In Part I of this work, low hydrogen recovery (≤30%) and CO-free hydrogen yield (≤20%) were obtained. In this second study the influence of higher pressure and sweep-gas flow rate was studied in order to improve the membrane reactor performances in terms of higher ethanol conversion, CO-free hydrogen yield and hydrogen recovery. The counter-current sweep-gas flow configuration was used for studying the effect of the reaction pressure and the sweep factor on the reaction system, while the co-current flow configuration was also considered for analysing the weight hourly space velocity effect. Moreover, a comparison with a traditional reactor working at the same MR operating conditions was also realized. As best results, the membrane reactor showed 100% ethanol conversion, 95.0% CO-free hydrogen recovery and ∼60.0% CO-free hydrogen yield, operating at 400 °C and 3.0 (abs) bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.