Abstract

In this study, the far-field noise and near-field flow properties from a heaving NACA 0012 airfoil at the Reynolds number of 6.6×104 were investigated experimentally in a 0.4 m2 anechoic wind tunnel. The airfoil had an incident angle of 0° and followed a sinusoidal heaving motion. The Strouhal number, controlled by changing the heaving frequency and amplitude, varied from 0.0024 to 0.008. The acoustic properties were measured by a free-field microphone placed at a distance of 1.2 m away from the tunnel central line, and the flow structures near the trailing edge were acquired using the particle image velocimetry. It was found that the heaving motion could reduce the sound pressure level (SPL) of the primary peak in the time-averaged spectra. The spectrograms obtained by the short-time Fourier transform revealed that the discrete tones were produced when the airfoil passed through the maximum heaving position. During the corresponding period, a sequence of large-scaled vortices convected on the airfoil surface was observed, and then was shed from the trailing edge to the wake region at the same frequency as the primary tone of the induced sound. With the increase of Strouhal number, the sound signals tended to be broadband, and the overall SPL was increased in the far field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call