Abstract

The development and evaluation of a hot-film probe, suitable for use within arteries and operated with a commercial constant-temperature anemometer and linearizcr, is described. The performance of the system in the recording of arterial velocity wave forms is described, and instantaneous and time-averaged velocity profiles constructed from measurements in the thoracic aorta of dogs are presented. The profiles were blunt, with boundary layers estimated to be less than 2 mm thick throughout the cycle, and significant skews were observed, the explanation for which appears to lie in the influence of local geometry on the flow. A preliminary study of flow disturbances in the aorta based on visual observation of instantaneous velocity wave forms and frequency spectrum analysis is reported. The occurrence of flow disturbances and turbulence is shown to be related to peak Reynolds number and the frequency parameter α. The possible roles of free-stream disturbances and boundary-layer transition in generating these disturbances are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.