Abstract

The unsteady thermal flow around a thin fin on a sidewall of a differentially heated cavity is visualized using a shadowgraph technique and measured using fast-response thermistors. Experiments show that the transition of the unsteady thermal flow around the fin from initiation by sudden heating to a quasi-steady state undergoes a number of stages including the formation of a horizontal gravity current under the fin and a starting plume bypassing the fin, entrainment into the downstream thermal boundary layer, and separation and oscillations of the thermal flow above the fin. We present a series of flow visualization images to describe the transition of the unsteady thermal flow, and obtain the unsteady velocity scales of the fronts of the lower intrusion and starting plume as functions of the time and Rayleigh number, which are verified by the results of the flow visualization experiments. In the transition to the quasi-steady state, separation and oscillations of the thermal flow above the fin are observed. It is demonstrated that these oscillations, which are sensitive to the geometry of the fin, trigger instability of the downstream thermal boundary layer flow and thus enhance convection. It is found that the frequency of the oscillations is a linear function of the Rayleigh number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.