Abstract

The effect of source/drain (S/D) parasitic resistance has been experimentally investigated for amorphous silicon (a-Si:H) thin film transistors (TFTs). In general, the apparent field effect mobility decreases with decreasing channel length. However, the apparent threshold voltage is relatively constant. This may be attributed to an ohmic parasitic resistance due to the use of ion-implanted n+ S/D regions. Self-consistent results were obtained from both TFTs and from independent test structures for the TFT parasitic resistance, contact resistance, and sheet resistance. The results showed that the current spreading under the S/D regions is most critical in determining the magnitude of the total parasitic resistance. In this regard, both the S/D ion implantation and the S/D to gate overlap reduce the total parasitic resistance. Finally, the parasitic resistance is modeled as a gate voltage-modulated channel resistance, under the gate overlap, in series with a constant minimum contact resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.