Abstract
Photoplethysmography (PPG) waveform is primary formed by absorbance and scattering of light caused by blood volume changes in the microvascular bed of tissue. The volume of blood is constantly changing due to cardiac activity and various low frequency physiological components, such as, respiration and sympathetic nervous system. Importantly, elastic property of blood vessels and blood pressure also greatly affects the volume of blood and thus PPG waveform inversely contains information on vessel elasticity and pressure that has been studied using e.g., pulse decomposition analysis (PDA) models. We emulated PPG waveform by using a simplified mock circulatory loop mimicking human circulatory system to study how changing elasticity of 3D printed vessels and blood pressure affects the PPG waveform, aiming to validate presented pulse decomposition analysis model for estimating vessel stiffness and blood pressure. The circulatory system built for the study is controlled via custom-made LabView software. Pumping frequency, pressure and flow of blood mimicking liquid can be controlled and accurately measured for a reference. The main analysis relied on the PDA that extracted five log-normal pulses for further analysis. In particular, we focused on the centre parameter of each log-normal pulse and observed it changes depending on the emulated parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.