Abstract

Tungsten disilicide (WSi2) was formed by annealing tungsten films deposited by low-pressure chemical vapor deposition on 〈100〉-silicon substrates. The influence of oxygen on the silicidation rate was studied. Si wafers with different oxygen content in the form of Czochralski, float-zone, and epitaxial wafers were used. Oxygen was also ion implanted into either the silicon substrate or the as-deposited tungsten film. The Rutherford backscattering technique was used to follow the progress of the silicidation. The silicidation rate was found to be dependent on the oxygen content of the Si substrates. The rate was lowest for Czochralski substrates and highest for float-zone substrates. Secondary ion mass spectroscopy was used to study the oxygen and fluorine profiles in the films prior to and after silicidation. Growth of WSi2 was found to be retarded concurrently with a pile-up of fluorine at the tungsten side of the W/WSi2 interface and a gettering of oxygen from the annealing atmosphere at the interface. Growth of WSi2 was then transferred to the tungsten surface. Oxygen implantation into silicon and tungsten, respectively, reduced the rate of silicide formation. Oxygen implantation into tungsten altered the distribution of fluorine and suppressed WSi2 growth at the tungsten surface. The observations led to a conceptual model, which ascribes the retardation in the growth of the inner WSi2 to a‘‘poisoning’’ effect caused by the increase of oxygen and fluorine levels at the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.