Abstract

Aquatic organisms have evolved exceptional propulsion and even transoceanic migrating capabilities, surpassing artificial vessels significantly in maneuverability and efficiency. Understanding the hydrodynamic mechanisms of aquatic organisms is crucial for developing advanced biomimetic underwater propulsion vehicles. Underwater tetrapods such as sea turtles use fins or flippers for propulsion, which exhibit three rotational degrees of freedom, including flapping, sweeping, and pitching motions. Unlike previous studies that often simplify motion kinematics, this study employs a specially designed experimental device to mimic sea turtle fins’ motion and explore the impact of pitching amplitude, asymmetric pitching kinematics, and pausing time on lift and thrust generation. Force transducers and particle image velocimetry techniques are used to examine the hydrodynamic forces and flow field, respectively. It is found that boosting the fin’s pitching amplitude enhances both its lift and thrust efficiency to a certain extent, with a more pronounced effect on thrust performance. Surprisingly, the asymmetrical nature of the pitching angle’s pausing time within one flapping cycle significantly influences the lift and thrust characteristics during sea turtle swimming; extending the pausing time during the forward and upward flapping process improves lift efficiency; and prolonging the pausing time during the downward flapping process enhances thrust efficiency. Furthermore, the mechanism for high lift and thrust efficiency is revealed by examining the vortices shed from the fin during different motion kinematics. This research contributes to a more comprehensive understanding of the fin’s hydrodynamic characteristic, providing insights that can guide the design of more efficient biomimetic underwater propulsion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.