Abstract
ABSTRACT Recently, an increase in the demand for evacuated tube solar water heaters has been observed in Iraq due to their acceptable thermal efficiency, which reduces the dependence on electrical energy to heat water for domestic uses. The efficiency of the evacuated tube increases with the amount of received solar radiation. Therefore, in the present work, the evacuated tube has been installed at the center of the parabola cylinder to focus more sunlight on its surface. Since the sun has a relative movement concerning the earth, which is variable from one season to another, and during the day from sunrise to sunset, heating water with an evacuated tube solar water heater (ETSWH) has fluctuating temperatures. An effective technique for increasing the efficiency of a solar water heating system is solar tracking technology, which exploits solar radiation continuously during the day. The LDRs were utilized as sensors, and a 12 V linear actuator have been used to guide the position of the modified trough solar water heater (MTSWH). A microcontroller board (Arduino Uno) implements the program code (software part). The MTSWH was experimentally tested, and the results showed that installing a single-phase open thermosyphon evacuated tube at the focus of the parabolic cylinder (MTSWH) increased the thermal efficiency by 16.5%. Moreover, the implementation of solar tracking system led to an increase in the outlet water temperature by 32% and ensured a continuous supply of water throughout the day at high temperatures compared to the conventional trough solar water heater (CTSWH). This study revealed that the MTSWH performance results showed good agreement with previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.