Abstract

This paper describes an experimental study of the cross-flow characteristics in a semi-staggered tube bundle for Reynolds numbers in the range 1100-12 900. It is shown that by displacing transversely the tubes in the even rows of an in-line bundle by one diameter the vortex-shedding mechanism is suppressed. Vortex shedding is re-established and reinforced by pulsations superimposed on to the approaching flow and a considerable increase in the power of the associated velocity fluctuations is observed in the bundle. Two cases of pulsating flow are examined with different effects on the flow structure of the bundle. Detailed measurements of the mean and fluctuating velocity fields in the semi-staggered tube bundle together with flow visualization images are also reported in the paper in order to examine in depth the effects of tube displacement and flow pulsations. Comparisons with in-line and staggered configurations having the same spacing-to-diameter ratios are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.