Abstract

The response of lead zirconate titanate and barium titanate piezoelectric ceramics to spherical microindentation was investigated. Force vs penetration depth curves obtained from instrumented indentation reveal that the indentation stiffness depends on the material condition (i.e. poled vs unpoled) and the type of indentor (i.e. electrically conducting vs insulating). Good agreement was found between the experimental results and predictions of an analytical model of Giannakopoulos and Suresh (1999) for the spherical indentation of a transversely isotropic piezoelectric material. A parametric analysis was conducted to identify key material properties that influence the indentation response. An error analysis was performed so as to assess the influence of the variabilities in constituent properties on the scatter in the measured indentation stiffness. This indentation method has been shown to offer a new methodology for characterizing some properties of piezoelectric materials. Advantages and limitations of such a technique are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.