Abstract

Use of the capsule endoscope (CE) in clinical examinations is limited by its passive movement resulting from the natural peristalsis of the gastrointestinal (GI) tract. Therefore, a locomotion mechanism is desirable for the next generation of capsule endoscope. Understanding the resistant properties of the small intestine is essential for designing a wireless magnetic actuation mechanism. In this paper, in vitro experiments were carried out to investigate the resistant force of the small intestine using 15 specially designed capsule prototypes and analysed the effect of the capsule dimension and moving speed. Segments of porcine small intestine were employed as a conservative model for the human intestine. When the capsules under experiment were moving at a speed of 0.5 mm/s, a resistant force of 20 to 100 mN were measured for the capsule diameter in the range of 8 to 13 mm. The force increased with moving speed. The intrinsic cause of the resistant force of the small intestine is discussed based on an analysis of the experimental data. It is believed that the viscoelastic properties of the tissue play an important role in the resistant characteristics of the small intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call