Abstract

It is necessary to generate the yield position away from the column face to minimize damage to the beam-column joint during a large earthquake in a reinforced concrete building. The same efficacy can be realized using partially high strengthened rebar. The number of longitudinal bars can be calculated for a bending moment smaller than the column face, reducing their number compared to the conventional bar-arrangement method. This paper describes reinforced concrete an interior beam-column subassemblage tests using this rebar as the longitudinal bars of beams and a column. The beam yield hinge was formed at a position apart from the column face, and the damage to the beam-column joint was less than the conventional bar-arrangement method. Additionally, the good performance was obtained if the bending strength of the column was large, even if the shear capacity margin of the beam-column joint was small. The column-beam flexural strength ratio and shear capacity margin at the beam-column joint need to be set with consideration of their relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.