Abstract
A pneumatic extruding direct writing deposition process is proposed in this paper. Compressed high-purity nitrogen was selected as a driving force to squeeze a liquid metal out of a nozzle. Combining this step with movement of the underlying substrate enabled the formation of metal patterns. Four nozzles with different structures were employed in this research, and the effect of the structural design of the nozzle on the flow of the liquid metal was analyzed both theoretically and experimentally. The influence of the distance between the nozzle and the substrate on the deposited metal lines was also investigated. To demonstrate a practical application, several metal patterns were successfully fabricated, each with a uniform and continuous metal line. Furthermore, three-dimensional objects were also fabricated. The results of a morphological analysis of the deposited metal lines show that the throttle channels added to the nozzle significantly decrease the flow of the metal fluid; as a result, nozzles with throttle channels produce thinner metal lines. The distance between the nozzle and the substrate influences the outline of the cross section of the deposited metal lines without significantly decreasing the outflow of the liquid metal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.