Abstract

The occurrence of oscillating combustion and combustion instability has led to resurgence of interest in the causes, mechanisms, suppression, and control of combustion noise. Noise generated by enclosed flames is of greater practical interest but is more complicated than that by open flames, which itself is not clearly understood. Studies have shown that different modes of combustion, premixed and non-premixed, differ in their sound generation characteristics. However, there is lack of understanding of the region bridging these two combustion modes. This study investigates sound generation by partially premixed flames. Starting from a non-premixed flame, air was gradually added to achieve partial premixing while maintaining the fuel flow rate constant. Methane, ethylene, and ethane partially premixed flames were studied with hydrogen added for flame stabilization. The sound pressure generated by methane partially premixed flames scales with M 5 compared to M 3 for turbulent non-premixed methane flames. Also, the sound pressure generated by partially premixed flames of ethane and ethylene scales as M ∼4.5. With progressive partial premixing, spectra level increases at all frequencies with a greater increase in the high-frequency region compared to the low-frequency region; flames develop a peak and later a constant level plateau in the low frequency region. The partially premixed flames of methane, ethylene, and ethane generate a similar SPL as a function of equivalence ratio when the fuel volume flow rate is matched. However, when fuel mass flow rate is matched, the ethane and ethylene flames produce a similar SPL, which is lower than that produced by the methane flame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.