Abstract

SummaryIn this study, we use a custom-designed visual cell to investigate nonequilibrium carbon dioxide (CO2)/oil interactions under high-pressure/high-temperature conditions. We visualize the CO2/oil interface and measure the visual-cell pressure over time. We perform five sets of visualization tests. The first three tests aim at investigating interactions of gaseous (g), liquid (l), and supercritical (sc) CO2 with a Montney (MTN) oil sample. In the fourth test, to visualize the interactions in the bulk oil phase, we replace the opaque MTN oil with a translucent Duvernay (DUV) light oil (LO). Finally, we conduct an N2(sc)/oil test to compare the results with those of CO2(sc)/oil test. We also compare the results of nonequilibrium CO2/oil interactions with those obtained from conventional pressure/volume/temperature (PVT) tests.Results of the first three tests show that oil immediately expands upon injection of CO2 into the visual cell. CO2(sc) leads to the maximum oil expansion followed by CO2(l) and CO2(g). Furthermore, the rate of oil expansion in the CO2(sc)/oil test is higher than that in CO2(l)/oil and CO2(g)/oil tests. We also observe extracting and condensing flows at the CO2(l)/oil and CO2(sc)/oil interfaces. Moreover, we observe density-driven fingers inside the LO phase because of the local increase in the density of LO. The results of PVT tests show that the density of the CO2/oil mixture is higher than that of the CO2-free oil, explaining the density-driven natural convection during CO2(sc) injection into the visual cell. We do not observe either extracting/condensing flows or density-driven mixing for the N2(sc)/oil test, explaining the low expansion of oil in this test. The results suggest that the combination of density-driven natural convection and extracting/condensing flows enhances CO2(sc) dissolution into the oil phase, leading to fast oil expansion after CO2(sc) injection into the visual cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call